## 

## آمرزشث ترجمهة متونرن رياضى

## براى تر جمه دانش آموزان

## 3. Use The Factor Theorem

If $R=P(r)=0$ in the equation $P(x)=(x-r)$ $Q(x)+R$, then $P(x)$ factors as $(x-r) Q(x)$. This fact can help us factor polynomials.

## The Factor Theorem

If $\mathrm{P}(x)$ is a polynomial funcation and $r$ is any number, then

If $P(r)=0$, then $x-r$ is a factor of $P(x)$.
If $x-r$ is a factor of $P(x)$, then $P(r)=0$.

## PROOF

Part1: First, we assume that $P(r)=0$ and prove that $x-r$ is a factor of $P(x)$. if $P(r)=0$, then $R=0$, and the equation $P(x)=(x-r)$ $Q(x)+R$ becomes

$$
\begin{aligned}
& P(x)=(x-r) Q(x)+0 \\
& P(x)=(x-r) Q(x)
\end{aligned}
$$

Therefore, $x-r$ divides $P(x)$ exactly, and $x-r$ is a factor of $P(x)$.
Part2: Conversely, we assume that $x-r$ is a factor of $P(x)$ and prove that $P(r)=0$. Because, by assumption, $x-r$ is a factor of $P(x), x-r$ divides $P(x)$ exactly, and the division has a remainder of 0 . By the Remainder Theorem, this remainder is $P(r)$. Hence, $P(r)=0$.

* دانش آموزان عزيز *

شما مىتوانيد تر جمههايتان را براى ما ارسال
 با مخاطبان) به چاپ برسد.

$$
P(r)=(r-r) Q(r)+R=(\circ) Q(r)+R=R
$$

بنابر اين: P(r)=R.
مثال r. كاربرد قضيهٔ باقىمانده

$$
P(x)=r x^{\uparrow}-1 \circ x^{r}+1 r x^{r}-1 \uparrow x-r x \text { در صورتى كه بدانيم }
$$

بر (X-Y) تقسيم شده است، با استفاده از قضيهٔ باقىمانده،
باقىمانده تقسيهم را پيدا كنيد.
حل: با اســتفاده از قضيه باقىمانده، باقىمانده تقســيم
P(ॅ) خواهد بود.

$$
P(x)=r x^{r}-1 \cdot x^{r}+1 r x^{r}-1 r x-r
$$

$$
P(r)=r \times(r)^{r}-10 \times(r)^{r}+1 \gamma \times(r)^{r}-1 r \times(r)-r=0
$$

باقىمانــده ه خواهـــد بــود. اگرچه این محاســبه
كسل كننده است، براى يكى ماشينحساب، ساده است.

$$
\begin{aligned}
& \text { قضئه باقى مانــده: اگر P(x) يك تابع چندجملهاى، } r \text { re } \\
& \text { هر عدد (حقيقى) دلخواه، و P(x) بر (x-r) تقسيم شده } \\
& \text { باشد، باقىمانده تقسيم P(r) است. } \\
& \text { اثبات: براى تقســيمم P(x) بر } \\
& \text { چجـون Q(x) و باقىمانــدهاى چـــون R(x) بيابيــم } \\
& \text { بهطورى كه: }
\end{aligned}
$$

$$
\begin{aligned}
& P(x)=(x-r) \times Q(x)+R(x) \\
& \text { از آنجايى كه درجــــٔ باقىمانده (R(x) (R) بايد كمتر }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ا اســت. لــذا R(x) } \\
& \text { P(x)=(x-r)Q(x)+R } \\
& \text { چندجملهاى ســمت راسـت يكســـان(همارز) است، و } \\
& \text { مقاديرى كــه آن آها براى هر عـــدد X مى پذيرند، با هـا هم } \\
& \text { برابرند. اگر ما بهجاى x قرار دهيم r، خواهيم داشت: }
\end{aligned}
$$



## The Remainder Theorem

If $P(x)$ is a polynomial function. $r$ is any number, and $P(x)$ is divided by $x-r$, the remainder is $P(r)$.

## PROOF

To divide $P(x)$ by $x-r$, we must find a quotient $Q(x)$ and a remainder $R(x)$ such that

Divident $=$ divisor. quotient + remainder

| $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| :---: | :---: | :---: | :---: |
| $P(x)$ | $=$ | $(x-r)$ |  |
|  | $Q(x)$ | + | $R(x)$ |

Since the degree of the remainder $R(x)$ must be less than the degree of the divisor $x-r$, and the degree of $x-r$, is $1, R(x)$ must be a constant $R$.
In the equation
$P(x)=(x-r) Q(x)+R$

the polynomial on the left side is the same as the polynomial on the right side, and the values that they assume for any number $x$ are equal. If we replace $x$ with $r$, we have

$$
\begin{aligned}
P(r) & =(r-r) Q(r)+R \\
& =(0) Q(r)+R \\
& =R
\end{aligned}
$$

Thus, $P(r)=R$.

## EXAMPLE 3

Using the Remainder Theorem
Use the Remainder Theorem to find the remainder that will occur when
$\mathrm{P}(\mathrm{x})=2 \mathrm{x}^{4}-10 \mathrm{x}^{3}+17 \mathrm{x}^{2}-14 \mathrm{x}-3$
is divided by $x-3$.

## SOLUTION

By the Remainder Theorem, the remainder will be $P(3)$.

$$
\begin{aligned}
\mathrm{P}(\mathrm{x}) & =2 \mathrm{x}^{4}-10 \mathrm{x}^{3}+17 \mathrm{x}^{2}-14 \mathrm{x}-3 \\
\mathrm{P}(3) & =2(3)^{4}-10(3)^{3}+17(3)^{2}-14 \times(3)-3 \\
& =0
\end{aligned}
$$

Substitute 3 for x .

The remainder will be 0 . Although this calculation is tedious, it is easy to do with a calculator.

